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Form Follows Function:
Reformulating Population Density

Functions

A simple isolated bit of evidence, however striking, is always open to doubt. It is
the accumulation of several different lines of evidence that is compelling. (Crick,
1990, p. 37.)

9. 1 Cities as Population Density Functions

We could have written this book by beginning with existing theories of
city size, shape and distribution and then gradually showing how fractal
geometry could be used to reinterpret, generalize and extend the body of
theory which geographers, economists and planners have been working
with for the last hundred years. But instead we chose a different tack, intro
ducing fractal geometry first and tracing out its implications for how cities
might be organized, before we embarked upon the ways in which our the
ory of the fractal city might link to the mainstream of urban studies. With
out our having reviewed the multitude of urban theories in other than cur
sory terms, it is already clear that fractal geometry has appealing properties
with respect to cities in ideas concerning space-filling, self-similarity and
density. In fact as Crick (1990) implies above, although these lines of evi
dence for a fractal theory of cities are highly suggestive, they become com
pelling when it is realized that much of what has been developed in the
mainstream is entirely consistent with fractal geometry.

We are now at the point where we can begin to make these connections,
in this chapter to the distribution of population and other activities within
the city, in the next to the distribution of population sizes and shapes across
cities. In fact as we have implied throughout this book, our foray into the
fractal geometry of cities is but a beginning and we anticipate that entire
areas of urban theory might be reworked using fractals in the coming years.
Here we will confine our efforts to the most basic applications starting with
simple gravitational density models which constitute the heart of what has
been called social physics. Ever since Newton published his celebrated
Laws of Motion in the late 17th century have there been attempts to apply
classical physics to social systems in general, city systems in particular.



Form Follows Function: Reformulating Population Density Functions 309

Social forces between populations in space were described explicitly by
Carey in the' mid-19th century using gravitational analogies, while the
notion that the density of economic activity declines with increasing dis
tance from its market is implicit in the work of von Thunen, circa 1830
(Hall, 1966). In the study of population densities, it is now just over 100
years since Bleicher (1892) wrote: "The rapid decrease in population density
with distance from the center is highly characteristic of an old city such as
ours" (Edmonston, 1975; Mogridge, 1984).

However another 50 years were to elapse before these observations were
associated with specific mathematical functions. There is some evidence
that such functions were being used in the 1940s (Ajo, 1944), but it is Colin
Clark (1951, 1967) who is accredited with the first use of the negative
exponential function as the basic model for population densities. Since then,
many variants of this model have been developed. The negative exponential
density function is consistent with the theories of strict utility-maximizing
associated with urban economic theory (Beckmann, 1969; Muth, 1969),
while the development of operational urban models based on entropy-max
imizing (Wilson, 1970) and discrete choice theory (Anas, 1982) which we
introduced, albeit briefly, in Chapter 4, make widespread use of such func
tions. Although early analogies with gravitational models based on the
inverse square function of distance formed the foundations of social physics
in the 1940s and 1950s (Stewart, 1941, 1950), these power functions were
quickly replaced with the negative exponential in the 1960s and 1970s due
to the analytical convenience of such functions in problems of economic
and statistical optimization, as well as to the elegance of the mathematical
forms produced.

These developments, however, appear to have lost sight of the fact that
the density and flow of economic activity across space must be fundamen
tally constrained and thus determined by the geometrical properties of their
physical systems. It is clear that there is much misunderstanding of these
issues, as Stewart (1950) was never slow to point out. Others such as Col
eman (1964) who have considered the foundations of social physics have
reinforced the point that power functions in their inverse form are the most
obvious ones which embody the physical properties of the correct systems
of interest (Batty and March, 1976). But such views have never attracted
much attention and have remained apart from the mainstream of urban
analysis during the last three decades. What a fractal theory of cities offers
is a coherent approach to these earlier traditions.

Here we will argue forcibly that the use of the negative exponential func
tion as a model of population densities is fundamentally flawed. We will
argue that its use is based on its convenience in problems of optimization,
on the elegance of its mathematical properties, not on its appropriateness
to empirical data, and certainly not upon our ability to make sensible
interpretations of its parameters. Our thesis here is based on the identifi
cation of appropriate scaling laws for urban systems based on ideas associ
ated with allometry, although our principal concern will be with linking
these laws to the principles of fractal geometry which shows how form
follows function. As we demonstrated in Chapter 7, scaling laws based on
power functions have been given a new lease of life of late in that their
parameters can now be unambiguously associated with the size, shape and
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form of the systems they describe. In short, their parameters can be associ
ated with the extent to which their systems exploit the space in which they
exist, the fractal dimension being directly associated with these parameters
and with the extent to which the form fills the space available. The form
or morphology of the system is no longer a prerequisite to models of its
functioning, but a consequence of the way the system works in space. In
this sense then, we will be dealing with systems in which 'form follows
function'.

This chapter will attempt to weave several diverse themes together. Once
again, we will note the work on urban allometry in which the size of the
urban system is related to the space it occupies (Stewart and Warntz, 1958;
Dutton, 1973), we will show how densities based on power functions arise
as a natural consequence of such allometry, and we will cast our argument
in terms of the new physics of fractional dimension (Davies, 1989) which
uses the empirical ideas of Chapter 7 explicitly and the DLA and DBM
models implicitly. We will first examine the properties of the negative
exponential and inverse power functions, showing that the inverse power
function has certain properties for describing urban population densities
which have hitherto been overlooked. These properties can be easily
exploited through scaling laws appropriate to urban systems, and accord
ingly, we show how urban form follows quite naturally from such func
tional descriptions. In this sense, we are also able to show that the density
parameters associated with these functions are directly related to the frac
tional or fractal dimensions of the space within which these city systems
exist.

These arguments have profound implications for the way we should
measure population density in cities, and thus we then set out to estimate
these functions in a variety of forms. The data set we use is for the city of
Seoul in South Korea for the year 1982 (Kim, 1985); four variants on the
base data set are used in estimating the density parameters of inverse power
functions which we also represent in four related forms. These forms are
estimated using three methods: the first two - regression of their log-linear
forms, and the so-called signature of the underlying fractal growth pro
cess - were introduced in Chapters 7 and 8, but a third, conventional
method based on entropy-maximizing, is also introduced here. The many
variants of data and estimation which we use produce a range of density
parameters and fractal dimensions which show remarkable consistency.
From the theoretical arguments developed in the last two chapters, we
argue that the fractal dimension of a typical city such as Seoul will have a
value between 1 and 2, probably between 1.5 and 1.8, and a density para
meter between 0.2 and 0.5. We show that this is indeed the case, and this
suggests that many previous estimates of population density functions
should be reworked with power functions to reveal parameter values which
if consistent, could be used to derive more meaningful taxonomies of city
size and shape.
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9.2 Exponential Functions of Urban Density

Clark's (1951) original model assumes that population density p(r) at dis
tance r from the center of the city (r = 0) declines monotonically according
to the following negative exponential

p(r) = K exp(-Ar), (9.1)

where K is a constant of proportionality which is equal to the central density
p(O) and A is a rate at which the effect of distance attenuates. Note that in
this chapter we will use A for the density parameter of the negative
exponential and Q'. for the inverse power function. ~ will be used as pre
viously as a general regression parameter of various scaling relations from
which the fractal dimension D can be derived. As previously, we will use
the variable r to indicate a variable distance from the CBD, whereas R will
be used to define the accumulation of distance which is an integral of r up
to the radius R. r should not be confused with its use as a measure of scale
in earlier chapters, but its use should be obvious from the context.

Clark's (1951) paper was wide-ranging, idiosyncratic and brilliant; he not
only fitted the log transform of equation (9.1) to over 20 cities using linear
regression but also speculated on how the parameter A changed through
time, thus charting from the beginning, the direction for all subsequent
empirical work on urban density functions. It is still not clear why Clark
chose the negative exponential function for he was unaware of Ajo's (1944)
doctoral dissertation in which a negative exponential function was used to
model traffic flow in the Finnish city of Tampere. It is likely, however, that
this function was chosen because it was popular in mathematical economics
in models of capital depreciation and the like of which Clark was prob
ably aware.

In the parallel development of social physics, inverse power functions of
distance were being widely exploited in gravitational models of traffic flow
and in rank-size relations. But there were no attempts to collapse such
gravitational models to models of population density until the early 1960s
when Smeed (1961, 1963) suggested a suitable such model might be
based on

p(r) = KrCY., (9.2)

where K is the constant of proportionality as in equation (9.1) above (but
not defined where r = 0) and Q'. is the parameter on distance. However, by
this time, there was already a major groundswell in urban economics and
transport modeling seeking to replace power functions with the negative
exponential. The use of log':"'linear utility functions in urban economics from
the work of Alonso (1964) on, and the development of gravity models using
entropy-maximizing (Wilson, 1970) both led to the use of the negative
exponential. The generalization of spatial interaction models into location
as well as traffic distribution models and their collapsing to a single origin
and many destinations led quite naturally to Clark's (1951) model (Bussiere
and Snickars, 1970). Furthermore, important empirical work by Mills (1970),
by Bussiere (1972b) and Bussiere and Stovall (1981), and by Mogridge (1984)
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drowned out any further attempts to model population densities by any
thing other than negative exponential functions.

So far, the body of work concerned with population density models is
almost exclusively based on the negative exponential function or its gen
eralization. As Zielinski (1979) points out, attempts at demonstrating the
precedence of one function over another in this field are quite inconclusive
and in the absence of further empirical evidence, theoretical considerations
suggest the negative exponential function as being superior. There have
been some dissenting voices. Smeed's (1961) work has been noted, and Blu
menfeld (1972) (summarized in Vaughan, 1987) and Saviranta (1973) have
both argued for inverse power functions of density. However, there has
been more work at seeking a generalized function such as the gamma
whose typical form is

per) = KrQ exp(-X-r), (9.3)

where the parameters K, ex and X- fulfill the same roles as in equations (9.1)
and (9.2). Tanner (1961), March (1971) and Angel and Hyman (1976) have
suggested that functions such as (9.3) are general enough to encompass the
various debates about one functional form or the other. Finally, it is worth
noting that Parr (1985a, b) amongst others has suggested that the negative
exponential function is more appropriate for describing density in the
urban area itself, while the inverse power function is more appropriate to
the urban fringe and hinterland. In later work, Parr and his colleagues have
argued that the most appropriate generalized function of density is the log
normal (Parr, O'Neill and Nairn, 1988: Parr and O'Neill, 1989); this relates
to processes which generate such functions, which in turn relate to the use
of such functions in fractal geometry.

The most obvious interpretation of the parameter X- in the negative
exponential can be made by taking the first derivative of equation (9.1).
Then

dp(r)dr = -X-K exp(-X-r)

= -X-p(r),

and thus

(9.4)

(9.5)
dp(r)
per) = -X-dr,

which implies that X- is the percentage change in density for a small change
in distance dr. In this sense then, the parameter plays a crucial role in the
calculation of elasticities in the fully-fledged urban economic theory of the
housing market which gives rise to this function (Muth, 1969).

To find an explicitly spatial interpretation of the parameter X- in equations
(9.4) and (9.5), we need to examine how the density function behaves with
respect to distance. There are two ways of proceeding. First, we will con
sider per) as a one-directional function on a single line of distance from the
center r = 0, and second we will consider how the same function behaves
in the field around its center which involves two directions; this latter possi
bility involves formulating the density in polar coordinates as per, 6) where
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r is the line of distance and 8 is the angular variation, both about the center.
Note that we will use the terms one-directional and two-directional only
in those contexts where it is necessary to draw distinctions between direc
tion and dimension. In all other contexts, the term dimension will suffice
for both (Batty and Sikdar, 1982).

We will first examine the one-directional function. Note that in the
sequel, we will normalize the density over its space to sum to unity. Then

J:b p(r) dr =J:b K exp(-Ar) dr =1, (9.6)

where Rbmarks the distance to the boundary of the spatial system. Evaluat
ing equation (9.6) gives the constant K as

K =1- e~(-ARb)' (9.7)

and therefore the density becomes

A exp(-Ar)
p(r) = 1 _ exp(-ARbr (9.8)

Clearly when Rb -+ 00, the value of K = A. The cumulative distribution of
p(r), N(R), is given as

N(R) =J: p(r) dr

1 - exp(-AR)
= 1 ( \R ) = 1 - exp(-AR). (9.9)- exp -I\. b

However, it is the mean density in the city which is of most interest, and
this is defined as

C(Rb ) = J:b p(r) r dr

1 Rb exp(-ARb) (9.10)
=x: - 1 - exp(-ARb)·

In equation (9.10), if Rb -+ 00, then C(oo) = l/A and the interpretation of A
is as an inverse measure of the mean density, thus controlling the spread
of the function in the linear direction.

The same type of analysis as presented in equations (9.6) to (9.10) can be
developed for the two-directional model which we stated earlier in polar
coordinates as p(r, 8). The density function is now given as

p(r, 6) =K exp(-Ar),

and its normalization as

J:n J:b p(r, 0) r dO dr =21TK J:b exp(-Ar) r dr = l.

The normalizing constant K can be evaluated as

A,z
K=----------

27T {I - (1 + ARb) exp(-ARb)}"

(9.11)

(9.12)

(9.13)
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From equation (9.13) when Rb-. 00, then K = X2 /27'1. The cumulative distri
bution function N(R) is

N(R) = 1 - (1 + XR) exp(-XR)
1 - (1 + XRb) exp(-XRb)

= 1 - (1 + XR) exp(-XR).

and the mean density

C(Rb ) =rf:b

p(r, 0) t"- dO dr

2 XR~ exp(-XRb)
=x: - 1 - (1 + XRb) exp(-XRb)'

As Rb -. 00, C(oo) = 2/X, thus implying that Xis also an inverse measure of
mean density controlling the spread of the function over the two directions
of space (Batty, 1974).

When the boundary distance Rb -'00, XC = 1 for the one-directional func
tion and XC = 2 for the two-directional. In this context, it is possible to
associate direction with dimension, the dimension of the spatial system
entering the calculation of the parameter Xdirectly. To anticipate an argu
ment of a later section, the spread of development is unlikely to be over
the entire two-dimensional space, but it is likely to be spread over more
area than the one-dimensional line. Therefore it is likely that 1 < XC < 2,
and thus the value of XC is a measure of the extent to which the density
fills two-dimensional space, if and only if Rb defines a good approximation
to the spread across space of the density function. We will now develop
the same analysis as contained in equations (9.6) to (9.10) and (9.11) to (9.15)
for the inverse power function.

9.3 Power Functions of Urban Density

An immediate interpretation of the parameter a in the scaling function in
equation (9.2) is provided by its first derivative

dp(r) a
-- = - - p(r) =-aK-a-l,

dr r

which can be written as

(9.16)

(9.17)dP(r)/dr --ex
p(r) r - ,

where ex is clearly an elasticity, the ratio of the percentage change in density
dp(r)/p(r) to the percentage change in distance dr/r. In equations (9.16) and
(9.17), a has a more precise interpretation than the negative exponential
parameter Xin equations (9.4) and (9.5), but its role is similar.

The difficulty with the inverse power function emerges when it is nor
malized. As previously we will begin with the one-directional form of the
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model and then repeat the analysis for two. The normalization of equation
(9.2) is given by

J:b p(r) dr =Kr" dr =1. (9.18)

The integral in equation (9.18) cannot be evaluated when r = 0, for the
function p(O) is infinite at this value. This has been one of the main reasons
for researchers preferring the negative exponential. However, the problem
can easily be dealt with by translating the origin of system to a value of r
> 0, r =1 being the obvious lower limit. Some have argued that population
density is not defined at the center of the city in any case or that population
density at a point is meaningless although neither of these assumptions are
necessary to the shift of the origin which is arbitrary. Evaluating the integral
in equation (9.18) from r =1 to r =Rb gives

I-a
K = (9.19)

R~-a -1

and

(r) = (1 - a)r
a

•

p R~-a - 1

As Zielinski (1979) points out, the normalization in equations (9.19) and
(9.20) is still "analytically awkward", and further indefinite integrals are
impossible to evaluate. With a little simplification, however, it is possible
to proceed. First if the boundary of the system r = Rb is much greater than
r = 1, then it is possible to ignore the lower limit; second if it is assumed
that a lies between 0 and 1, then equation (9.20) will always act as an
inverse power function. Moreover, if a 2::: 1, then the function breaks down,
and is no longer meaningful as a model of population density. Thus the
use of equation (9.20) implies that there are tight bounds on the value of a.
With these assumptions, the cumulative density function can be written as

N(R) =rp(r) dr

R(I-a)
=-- = R(I-a).

RbI-a)

Finally the mean density C(Rb ) is evaluated as

C(Rb ) =t p(r) r dr

I-a
=-2- Rb.

-a

(9.21)

(9.22)

and this shows that the parameter a depends directly upon the value of
the system boundary Rb • From equation (9.22), the parameter a can be
computed as

2C(Rb ) - Rb

a = C(R
b

) - R
b

I
(9.23)



316 Fractal Cities

but this is still an approxim~tion whose relevance cannot be judged in
advance of any particular application. However, equation (9.23) does pro
vide some bounds on the value of <x, namely that as Rb > C(Rb), then ex :5

1. The analysis for the two-directional model follows directly. The normaliz
ation is given as

f:W

f~ p(r, e) r dr de =2-rrK fb r" r dr =1,

from which K can be evaluated as

2-exK------
- 27i" (R~-a - 1>"

Assuming that Rb ~ I, then the density p(r, e) becomes

( )
(2 - ex) ,a

pr,e =---
27i"R~-a

and the cumulative density is

f
2'lT fR

N(R) = 0 1 p(r, e) r dr de

The mean density C(Rb) is now evaluated as

(9.24)

(9.25)

(9.26)

(9.27)

(9.28)

(9.29)

C(Rb) =rrp(r, e) r dr de

2-ex
=--Rb,

3-ex

and this has the same structure as equation (9.22) for the one-directional
model. It is possible to compute ex from equation (9.28) as

3C(Rb ) - 2Rbex= ,
C(Rb) - Rb

and from this, it is clear that ex is unlikely to be greater than 2. The real
significance of equations (9.23) and (9.29) however is that they show that
the parameter ex of the inverse power model is critically dependent on the
boundary of the system Rb , and in certain empirical contexts, it will be
possible to estimate ex from these equations.

Although the differences between the two functions elaborated through
equations (9.4) to (9.15) and (9.16) to (9.29) are substantial in mathematical
terms, in practice both have been shown to fit empirical data equally well
(or equally badly). In this section we will seek to demonstrate this. In Figure
9.1, one-dimensional negative exponential and inverse power functions
from equations (9.8) and (9.20) respectively are plotted up to a regional
boundary Rb = 50 units of distance. The parameters X. and ex have been
chosen to fit a mean density C(Rb) = 20 units; values of X. = 0.025 and
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Figure 9.1. A comparison of the negative exponential and inverse power
functions.

a = 0.349 have been estimated which give simulated mean densities for
both functions within 0.01% of the predetermined mean. Before we explore
these functions further, it is worth noting for the inverse power function
that if equation (9.23) is used to predict a, which is based on the assumption
that the lower limit of r is 1, then the value of this parameter is 0.333 which
is within 5% of the computed value.

No simple solution for the parameter Aexists for the negative exponential
model. A first approximation to A based on l/C gives 0.05 while the use
of the two-dimensional equation 2/C gives 0.1. The actual computed value
is half the one-dimensional approximation, thus implying that the negative
exponential over the given range from r = 0 to r = 50 provides only a partial
approximation to its overall spread. This can be easily seen in Figure 9.1
where the inverse power function is much steeper in the area of its origin
compared to the negative exponential which has a more gradual slope over
the same distance to which it is applied. A more direct comparison of these
functions can be made over their intermediate ranges where, from Figure
9.1, it is clear that the functions are similar. These functions will cross at r
=4.011 and r =33.722, which are solutions to the equation of the two model
functions {A exp(-Ar)/[l - exp(-ARb )]} = {(I - a)r1-a/Rl,-a}. It is between
these two values that the functions are similar.

From Figure 9.1, it is quite clear that both functions are likely to be poor
predictors of the central densities in the neighborhood of the origin r =O.
The inverse power function will overpredict while the negative exponential
is unlikely to give a good prediction for there is little flexibility in con
trolling the value it takes when r = O. Figure 9.1 also shows the problem
with the negative exponential at the regional boundary. The fall-off in den
sity from this model is likely to be too great. The pattern of population
density in the hinterlands of western cities has been shown to be more
even and higher than the negative exponential is able to predict, hence the
suggestion that the negative exponential be only used to model intraurban
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variation in density, the inverse power being used to model peripheral vari
ation (Parr, 1985a).

One of the main reasons for the popularity of the negative exponential
function in population density models relates to its elegant properties. In
fact, as we have shown above, these properties can only be fully exploited
when it is assumed that the regional boundary distance is infinite; in short,
this is only the case when the infinite boundary provides a good approxi
mation to the observed density field. In the given hypothetical example as
well as in the applications to Seoul which follow, this is clearly not the case
and it is the inverse power model which yields more tractable equations
which can be exploited in rapid estimation. Furthermore, although the
negative exponential emerges 'naturally' from entropy-maximizing, this is
due to the constraint on total travel distance adopted. There is in fact con
siderable evidence to suggest that distance perception is logarithmic, this
being the basis of the Weber-Fechner law in psychology. If the logarithmic
constraint on travel distance is used, then it is easy to show that the inverse
power function is the appropriate derivation using entropy-maximizing. On
balance, it is our view that both functions are useful in different contexts.
Moreover, we should not ignore Zielinski's (1980) comment: "Since both
(functions) can give practically identical fits to data, what criteria should
be adopted to prefer one to the other? In this case the pragmatist must take
the back seat to the theoretician. And theoreticians must endeavor to prove
their assumptions". This we will attempt to do in the following sections.

9.4 Urban Allometry, Density and Dimension

In the growth and evolution of natural systems, there has been considerable
research into the ways various features of such 'systems scale with increas
ing size, the study of relative sizes being allometry (Gould, 1966). We briefly
alluded to this line of research iRChapters 2, 6 and 7, but here we provide
a more complete summary in preparation for this and the next chapter.
Allometric relationships relate the size of an object to a familiar yardstick
such as length. For example, taking a measure of size in terms of the dimen
sion of a system E, in Euclidean geometry we can define points where E =
0, lines where E = I, planes where E =2 and so on. If we take the yardstick
as a measure of length in one dimension, that is R say, then objects which
scale as a point vary as RO, as length itself R1

, as the plane R2 and so on,
in general the scaling relation being RE

• If the size of the object in question
is expected to scale as RE

, we refer to this as isometric scaling. If the object
scales as RD with D < E, then this is called negative allometry and if D >
E, this is positive allometry.

In its most basic form, population density can be considered as the sca
ling between population N(R) and area A(R), however defined, where R is
some measure of the linear dimension of the space. Then the key scaling
relation between N(R) and A(R) can be written as

N(R) ~ A(R)"'. (9.30)
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From a priori considerations, we can argue that the value of the parameter
<I> indicates how population fills the two-dimensional space available to it.
If <I> > 1, then the population fills more than the two dimensions of the
space, while if <I> < 1, population is filling less than its available space.
There have been several studies of this allometric relation over different
sizes of cities based on the general assumption that as cities grow into the
third dimension, then equation (9.30) should exhibit positive allometry.
This is borne out in the work of Stewart (1947) and Stewart and Warntz
(1958) where they show that <I> = 4/3 for British and American cities with
1951 data. With Swedish data for 1966, Nordbeck (1971) concludes that <I>

= 1.506 which is a little larger than 3/2 which would be the value if cities
filled the three dimensions available to their development. More recently,
Jones (1975) following work by Best, Jones and Rogers (1974), has derived
<I> as 1.193 for cities in England and Wales from the 1971 Population Census,
and Craig and Haskey (1978) who reworked these data concluded that <I>

has remained approximately stable since 1951 with a value between 1.41
and 1.45. However, Woldenberg (1973) using data for American cities has
shown that <I> varies from around 0.8 to 1.2 depending upon the data set
used.

All these studies refer to data sets based on wide ranges of city size. In
the intra-urban case, where population densities decline with increasing
distance from the center, equation (9.30) will show negative allometry. First
we will replace the measure of area in equation (9.30) with the yardstick
of length R which enables us to link this analysis to population density
functions introduced above. Then equation (9.30) can now be written

N(R) = 'YA<l>

= 'Y('Ti'R2)<l> = <pRD, (9.31)

where we have assumed that the distance associated with the area is given
as R = -VA, and 'Y and <p are constants of proportionality. From equation
(9.31) it is clear that D = 2<1> and if <I> < 1, then D < 2. Takayasu (1989)
refers to D as the 'effective dimension', but to anticipate our argument, this
of course is the fractal dimension. As in the two previous chapters, the
value of D is thus a measure of the extent to which the city fills its two
dimensional area.

Without anticipating the value of D for any particular city, we can now
present the equation for population density in terms of the scaling relation
based on the yardstick of length R and explicitly containing the parameter
D. From equations (9.30) and (9.31), we will write the density as in equa
tions (2.33) and (7.9)

p(R) =~~~i ~ A(R)<l>-l, (9.32)

and from this it is clear that if population is isometric with area and <I> =
1, then p(R) is constant. For population density to decline with increasing
distance from the center, then the exponent in equation (9.32) must be less
than 0, that is <I> - 1 < 1, while it is most unlikely that <I> would be greater
than 1 which would imply increasing density with distance from the center.
Writing (9.32) explicitly in terms of the yardstick R gives
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(9.33)

(9.34)

and for the density to decline with distance, it is clear that the fractal dimen
sion D should be less than 2, implying that the city will not fill the two
dimensional space available.

The real value of this analysis is in revealing how density should be
defined. Casual observation should suggest whether the city is filling two
or three dimensions. If the city fills less than the plane, then the appropriate
space on which to compute density is the plane; thus the definition of area
as A(R) = 'Ti'R2 in equation (9.32) is correct and the value of D will be less
than 2. However, if the city is filling three dimensions of space then the
appropriate normalization by area would be A(R) = 'Ti'R3, the volume, and
then the value of D would probably be greater than 2 but less than 3. In
this case, the more general form of density equation in (7.18) would be
appropriate. In fact, in all studies of density to date (of which the authors
are aware), the implicit assumption is that cities fill the plane, not the vol
ume, thus suggesting that the argument made by Nordbeck (1971) amongst
others that cities fill the third dimension is spurious.

The other important conclusion from this analysis is that the measure of
area to be used represents the space within which the city grows, its field,
not the more restricted area which is associated with its built-up form; in
fact most studies of density based on the population and area of Census
tracts treat the area of the field, although in some studies which use built
up area, the parameters derived cannot be compared with those here. What
is certain, however, is that in most studies of population density to date,
researchers have paid very little attention to the definition of area, thus
throwing into question the validity of the parameter values estimated, at
least in terms of the sorts of theory invoked here. Comparisons between
different studies are therefore difficult to make.

9.5 The Basic Scaling Relations Revisited

We are now in a position to relate the density equations stated earlier in
terms of the inverse power functions, to those derived from urban
allometry. We will use the two-directional function given in equation (9.26).
Equating this to the density in equation (9.33), we will integrate over 8.
Then

p(R) = I:w p(R, 0) dO =K'R~ =~D-2,

and if the equation holds, then D - 2 =- (X or (X =2 - D. As D is a measure
of the extent to which space is filled, then it is expected to be less than 2,
and thus (X is its complement, a measure of the extent to which the available
space is not filled. The cumulative density functions can also be equated,
and the same conclusions drawn. Comparing equation (9.27) with (9.31)
and using appropriate notation, then
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N(R) = K"R2-a = (f>RD. (9.35)

Equations (9.34) and (9.35) suggest a coherent and useful coincidence
between the fractal dimension D and the parameter of the associated
inverse power function of population density; that is, that the two dimen~

sions of the associated space can be divided into a space-filling component
D and a non-space-filling component a which sum to the Euclidean dimen
sion E of the space within which the city exists, in short, that E =D + a =2.

We have already defined three scaling relations, namely the population
area relation in equation (9.30), the population-radius relation in equations
(9.31) and (9.35), and the density relation in equations (9.33) and (9.34).
We will add to these a fourth relation, based on the first derivative of the
cumulative population-radius relation in equation (9.35). This relation,
referred to as the incremental population-radius equation, is derived as

n(R) = d~1R) = hRD-l = hRTI.

h is a constant of proportionality and TI is the scaling parameter. We now
have four scaling relations; three of these which relate the cumulative popu
lation N(R), the incremental population n(R), and the density p(R) to the
radius R and based on equations (9.31), (9.36) and (9.33), are those used in
Chapters 7 and 8 to describe the distribution of particles in the DLA and
DBM simulations. These will be used here in the empirical analysis of den
sity in Seoul, but note that the alternate density variable Q(R) which was
used in Chapters 7 and 8 and defined previously in equation (7.26) is not
used. The fourth relation is the classic allometric equation which relates
N(R) to A(R) as in equation (9.30).

Before we broach the question of estimation, we must make clear the fact
that we expect the value of the fractal dimension estimated from the Seoul
data to be similar to that of the DLA simulations, that is D = 1.7, as implied
in many of the estimates given earlier in Table 7.1. Thus the value of the
density parameter would be around -0.3, that is a = D - 2. Earlier we
speculated that in the case of the negative exponential density function, the
dimension of the system would fall between 1 < hC < 2 from arguments
relating to the mean density in one- and two-dimensional systems. We can
now speculate that X.C = 1.7, a result which has already been borne out in
work by one of the authors almost 20 years ago (Batty, 1976). Similar
relations are not obvious for the inverse power function, although D and
a are immediate results of their estimation and further insights must await
further research. To provide some sense of closure to this theoretical section
and to progress the research to applications, methods of estimating equa
tions (9.31), (9.36), (9.33) and (9.30) in that order will now be discussed.

9.6 Methods of Parameter Estimation

There are two main issues to clarify before we embark on fitting the basic
scaling relations to the empirical data: these deal with aggregating the data,
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and choosing appropriate estimation methods. We will deal with these
issues in turn. Researchers fitting population density models have either
dealt with the data in their raw form by Census tracts or have aggregated
the data into concentric rings. The latter method produces better fits and
hence more reliable estimates because local variations in the data are
reduced, but the use of one or the other data set ultimately depends upon
the purpose for which the analysis is undertaken. Here we will employ
both, but we consider that the method of concentric rings is likely to give
much 'truer' estimates of the values of the parameters D and a which is of
most interest to the analysis performed here. In fact, this was the method
which we used to organize the data in Chapters 7 and 8 for comparing the
theoretical simulations with Taunton and Cardiff. A related issue involves
the way the data are aggregated over distance and whether relationships
are fitted in their cumulative or incremental form. Cumulative relations are
bound to give better fits and this will be our emphasis although we will
also examine some incremental estimates. In this sense then, we will follow
the practice of Bussiere (1972) and Bussiere and Stovall (1981), rather than
the traditional treatment used by Clark (1951).

The first method of estimation we will use and one that will act as our
baseline, involves taking logarithmic transformations of equations (9.31),
(9.36), (9.33) and (9.30) and estimating their parameters using linear
regression. The four relations can now be summarized in discrete form as

log Ni = al + ~l log Ri, (9.37)

log ni = a2 + ~2 log R i , (9.38)

log Pi = a3 + ~3 log Ri, (9.39)

log Ni = a4 + ~410g Ai' (9.40)

Note first that the intercepts or constant terms all a2' a3 and a4 are not
directly related to the parameter a of the inverse power function but are
so defined to make them consistent with their usage in Chapters 7 and 8
through equations (7.49). Throughout the analysis, distances are ordered
so that Ri < R i+ l < R i+2, the cumulative populations are given as N i = 'Sjnj'
(j = I, ..., i), the areas for each cumulative ring as Ai = 'TTR~, the actual area
of each ring as ai = Ai - Ai-I, (i > 0 and Ao = 0), and the density Pi = nJai'
We also need to be clear about the various parameter estimates in these
equations and the look-up table reproduced as Table 9.1 shows the conver-

Table 9.1. Relationships between the parameters

Equation Intercept Slope Dimension Density
number l parameter parameter D coefficient (X

9.37 (9.31) (Xl = log 'P ~l = D ~l 2 - ~l

9.38 (9.36) (X2 = log h ~2 = 1) 1 + ~2 1 - ~2

9.39 (9.33) (X3 = log ~ ~3 = D - 2 2 + ~3 ~3
9.40 (9.30) (X4 = log 'Y ~4 = <l> 2~4 2(1 - ~4)

1 The first equation number in each row is the number of the log transform of the second
equation number (which is in brackets).
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sion between these parameters, the dimension D and the coefficient a.. In
the sequel, all estimates are given to three decimal places.

There are several other methods of estimation which we consider less
reliable than log-linear regression. Mills (1970), Mills and Tan (1980), and
Weiss (1961) all use methods which involve only two values of density or
population given at two different points within the city. For example, if the
density p(R) or the cumulative population N(R) are known at, say, distances
Rand Rb , then using equations (9.26) or (9.27) in the two-dimensional case,
the constant and scaling parameters can be found from the solution of two
equations in two unknowns using the Newton-Raphson method (Batty,
1976). There is little work on how reliable these types of estimates are in
comparison with those from regression, but we consider that such methods
are really only appropriate when no more than two observations are avail
able.

There are, however, two other methods which we will use, the first of
which was introduced in Chapters 7 and 8 and which can only be used if
population data are available on a very fine lattice. Where each occupied
lattice point is the location of a single equal-sized household, then a good
approximation to the density in equation (9.33) is p(R) - RD-2 where the
constant of proportionality is approximately equal to unity. Then for any
distance R from the center, D can be calculated from a log transform of this
equation, given earlier in equation (8.13) which is restated as

(8.13)

In earlier chapters we called the graph of D(R) against R the 'signature' of
the density function. In the vicinity of its origin, D(R) can fluctuate wildly,
but it soon settles down to a characteristic value (D{R) = 1.7 for the case
of a DLA cluster). At the edge of the cluster, the value of the dimension is
also umeliable because this is the area where the city is likely to be
developing most rapidly. Thus the best value of the dimension will be given
at the distance value of the mean density, that is at D{C(Rb)}. We have not
yet said anything about the data in the applications which follow, but two
of the four data sets we will use are based on a crude approximation to
the shape of the city using lattice point data which reveals the morphology
of the city in question. This will become clear in the sequel.

The last method is well-known in that it is based on deriving the density
and population model by entropy-maximizing. Formulating the model in
terms of the location of population nj in individual zones i, the model can
be stated as

(9041)

where N is the total population in its absolute value (or normalized form
where N = 1). The parameter 11 in equation (9A1) is found by solving th~
model subject to either of the following two constraint equations
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or

- 2: njC= -R·
N'

j

- ~ nj
Clog =L.J N log Rj •

j

(9.42)

(9.43)

Strictly speaking, equation (9.41) is associated with constraint equation
(9.43) not (9.42); that is, equation (9.41) is derived by maximizing entropy
subject to equation (9.43), thus leading to the derivation of the inverse
power function (Wilson, 1970). In fact, we will fit equation (9.41) by separ
ately solving for both equation (9.42) and (9.43), thus giving two estimates
of'Yl (and thence of D and a through Table 9.1). We will not concern our
selves any further with entropy-maximizing except to point out that there
is a strong relationship between entropy, information and fractal dimension
which finds its clearest expression in the derivation of power functions such
as thos~ treated here (Batty and Sikdar, 1982; Takayasu, 1989).

9.7 Applications to Large Cities: the Seoul
Data Base

Seoul was selected for our empirical work because the negative exponential
model has already been fitted to its population density, thus giving us the
opportunity of making some casual comparisons to the inverse power den
sity models which we will estimate here (Kim, 1985). We also had access
to reasonable population data for the city at three dates 1970, 1977 and 1982
from which we selected the 1982 data for our applications. Moreover, Seoul
is a rapidly growing city, its population increasing from around 5.5 million
in 1970 to almost nine million in 1982, and we consider that cities such as
this one where rapid growth has taken place under few market imperfec
tions to be ideal testing ground for the ideas introduced here. The basic set
of zones for the 1982 population data are shown in Figure 9.2(a) which are
aggregations of Census tract data. In the analysis, the center of the city was
found using centrographic analysis on the 1982 data (Kim, 1985). Distances
to all other zones were then defined as crow-fly distances from this center
to each individual zone centroid. From this original data set, the zones are
ranked according to distance from the center and these are aggregated in
the given order for estimating three of the four scaling relations.

The second data set used is quite different. The urban form of Seoul taken
from a 1982 cadastral map was defined by placing a 72 x 72 lattice across
the built-up area and coding each lattice point according to whether the
surrounding cell was developed or undeveloped. The size of the lattice
spacing was half a kilometer, and a lattice point was classified as developed
if more than half the surrounding cell was built up. The basic logic behind
this type of coding is that if the lattice spacing is fine enough, the lattice
will detect the location of population in such a manner as to provide a



Form Follows Function: Reformulating Population Density Functions 325

(a)

(b)

Zonal System

Full Morphology

(c)

(d)

Zonal Morphology

Reduced Morphology
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Figure 9.2. Zonal and lattice systems for the four data sets.

detailed morphology of the city. In short, although each lattice point is
assumed to have an identical population density, when aggregated for pur
poses of analysis into concentric rings say, then the variable density of
population will be detected. This is clearly not the case here where the
lattice is far too coarse; for it to pick up the kind of variation needed, the
spacing should be as fine as 10 m x 10 m. Our gross approximation here is
thus illustrative rather than definitive, and although it does pick up the
morphology and variable density at a crude scale, the results of using this
data set must be interpreted with caution. The coding is shown in Figure
9.2(b).

Two related data sets have also been produced. First, by combining the
measured population in the first 80 zone data set with the morphology
defined by the second, a third data set in which the actual population is
allocated to the points of the lattice can be defined. This is done by over
laying the zonal structure in Figure 9.2(a) on the morphology in 9.2(b),
associating each lattice point with one of the original 80 zones, and counting
the number of lattice points in each zone. The population in each original
zone is then allocated equally to as many lattice points as there are in the
zone in question. Figure 9.2(c) shows the overlay of the two zoning systems
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which produces the third, noting that the periphery of the city is excluded
from the original urban morphology shown in Figure 9.2(b) due to the fact
that population data is not available for these outer areas. The fourth and
last data set is similar to the second except for the peripheral areas which
have been excluded. This is simply formed by overlaying the first data
set on the second, excluding the peripheral areas, thus forming a reduced
morphology based on lattice spacing. This is shown in Figure 9.2(d).

For the second, third and fourth data sets which are all based in some
way on the lattice morphology, concentric rings can be easily defined at
increasing units of equal distance around the center. In these cases, we have
divided the greatest radial distance to the edge of the city into 25 equal
units on which we have arranged 25 concentric rings. The populations and
related variables for each ring have then been derived by counting the num
ber of lattice units (and their populations in the case of the third data set)
which fall into each ring. In subsequent analysis, we will refer to these four
data sets as follows; the first data set based on the zones shown in Figure
9.2(a) is called the Zonal System, the second in Figure 9.2(b) the Full Mor
phology, the third in Figure 9.2(c) the Zonal Morphology, and the fourth
in Figure 9.2(d) the Reduced Morphology.

It is also important to be clear about which estimation method is to be
applied to which data set at this stage. All four scaling relations in equations
(9.31), (9.36), (9.33) and (9.30) will be fitted to all four data sets using the
logarithmic transformations given in equations (9.37) to (9.40). This will
represent our set of baseline estimates for we consider this type of esti
mation as providing us with the most comprehensive set of estimates. This
will generate four estimates of the dimension D and the density parameter
a for each of the data sets. The estimates based on solving the entropy
maximizing constraint equations in (9.42) and (9.43) will also be applied to
each of the four data sets. This will provide us with two sets of parameters
D and a derived from TJ, one for each solution of the appropriate constraint
equation. Finally, the method of calculating D (and hence a) from the signa
ture given in equation (8.13) is only valid for the Full and Reduced Mor
phology data sets, the second and fourth, because this requires that the
data be based on equally dense lattice points. This concludes our survey
of the data and we will now embark on presenting the baseline estimates.

9.8 The Density Model Estimates

Throughout the process of fitting the baseline equations in (9.37) to (9.40)
to the four data sets, the analysis was aided by frequent graphical interpret
ations of the base data, model predictions and residuals. To provide some
sense of the similarities between the data sets, we have plotted the cumulat
ive population {Ni } against the radius {Ri } as given in equation (9.37). The
graphs of these data are plotted in Figure 9.3 and show very characteristic
profiles which go some way to indicating that the four data sets are
detecting the rudiments of the urban form and density of Seoul.' as well as
being similar to related profiles in other cities (for example, see the exten-
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Figure 9.3. Cumulative population profiles for the four data sets.

sive examples in Bussiere and Stovall, 1981). Using Figure 9.3, if a detailed
analysis is made of the variation in density and population in the vicinity
of the origin and at the edge of the city, it is clear that density is volatile
and shows no characteristic trend in these areas. Population density is
notoriously difficult to model near the center of the city, while at the edge,
the city is growing at its fastest rate, and the density is nowhere close to
the density which will ultimately prevail.

The models therefore should not be applied in these areas; at the center
whatever function is used is likely to be inappropriate, while at the edge,
densities are likely to be too low, and thus the function will underpredict
these. We will use these characteristics to exclude certain observations from
our data set in the results presented below as we did with the simulation
results and the empirical data pertaining to Taunton and Cardiff in Chap
ters 7 and 8. This is a particularly important issue in modeling population
density, for we must assume that wherever the density function applies,
the -city must be in equilibrium. In previous work, this issue has been
entirely ignored for most research has not been cast into an appropriate
dynamic framework which indicates that densities in the areas of the origin
and periphery of a growing city are likely to be subject to rapid change.
The theory of the growing city which we have alluded to here based on
DLA simulations provides a strong rationale for systematically excluding
these areas from our estimation and accordingly, we will proceed by
doing so.

Table 9.2 presents the results of fitting equations (9.37) to (9.40) to the
Zonal System data whose spatial system is subdivided as in Figure 9.2(a).
In the sequel, all parameter estimates from these equations will be con
verted into their appropriate fractal dimension D using Table 9.1, and the
reader can easily note the density parameter a by calculating it as 0 - 2.
Table 9.2 shows immediately that the fit of the cumulative populations with
respect to area and radius are much better than those of the incremental
population and the density. This difference has been widely observed in
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Table 9.2. Dimensions associated with the Zonal System data

Number of Population- Incremental Population Population-
zones radius population density area

(9.37) (9.38) (9.39) (9.40)

80 1.765 1.096 1.633 1.504
97.7 00.9 18.9 87.0

77 1.667 1.088 1.490 1.352
less 1-3 98.0 00.5 25.9 84.2

71 1.850 1.203 1.976 1.976
less 72-80 98.5 04.8 02.3 99.3

68 1.758 1.228 1.932 1.914
less 1-3, 72-80 98.9 04.9 23.7 99.4

Note: The statistics shown below each of the estimates of dimension are coefficients of determi
nation lOOr2 calculated for each set of dependent and independent variables. These are also
shown in Tables 9.3, 9.4 and 9.5.

the literature and results from aggregating variables, thus reducing their
variance (Muth, 1969). However, our quest is to increase the fit of all four
equations by systematically removing those observations which are most
suspect. To this end, we have first removed the three central zones, then
the nine peripheral zones, and then these central and peripheral zones
together. The fit of all the equations is improved by these exclusions,
although the estimates of dimension for the incremental population equ
ation (9.38) differ most from the other three whose values are closest to one
another. The best fits occur for all four equations when both the central
and peripheral zones are excluded with the cumulative population-radius
relation giving a dimension value closest to that of the DLA model (1.758
compared to 1.71), with all four of its dimensions for the four variants on
this data set, falling between 1.667 and 1.850. What is extremely encourag
ing for this data set is that all the dimensions lie between 1 and 2, the range
which suggests that cities do not fill their entire two-dimensional space. As
we will see, our confidence that the 'true' dimension of Seoul lies between
1.5 and 1.8 will be progressively increased as we examine each data set.

The second set of data - the Full Morphology - detects the form of the
city, but is based on the assumption that each lattice cell has the same
density of population. These 1300 cells have been aggregated into 25 equ
ally spaced concentric rings, and the same type of progressive reduction
in the rings used is made in the attempt to exclude the most problematic
observations. The rationale for these exclusions only becomes clear when
the data are plotted, which has been done in every case but is not illustrated
here for lack of space. The results are shown in Table 9.3, and these indicate
once again that it is the incremental population relation in equation (9.38)
which has the lowest fit, and the cumulative population relation (9.37)
which has the best. Of the 24 estimates of dimension given in Table 9.3,
only two of these fall outside the range of 1 < D < 2. The average of all
dimensions in this table is 1.551, and once again, the estimates from this
data set which detect only the form are similar to those in the first set which
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Table 9.3. Dimensions associated with the Full Morphology data

Number of Population- Incremental Population Population-
concentric radius population density area
rings (9.37) (9.38) (9.39) (9.40)

25 1.333 0.668 1.593 1.513
97.3 06.2 63.2 95.5

24 1.290 0.148 1.449 1.389
less 1 95.5 25.1 73.9 94.3

15 1.498 1.597 1.835 1.793
less 16-25 99.5 71.3 55.6 99.2

14 1.552 1.384 1.753 1.721
less 1, 16-25 99.2 41.7 65.8 98.8

9 1.529 1.918 1.957 1.943
less 10-25 99.3 98.1 60.1 99.9

8 1.682 1.876 1.940 1.930
less 1, 10-25 99.7 94.8 54.6 99.9

detect only the density. In Table 9.3, the best estimates across all four scaling
equations are given by the data which excludes the 16 peripheral zones.

Perhaps the most consistent data set for the models developed here is
the third - the Zonal Morphology - which combines both density and form
and which is shown in Figure 9.2(c). The results of fitting the four equations
to this set are shown in Table 9.4 where it is clear that all dimensions esti
mated, with the exception of one, fall between the limits of 1 and 2. As
observations are excluded, the performance of the models increases signifi
cantly with the best fitting range of estimates achieved when the 15 periph-

Table 9.4. Dimensions associated with the Zonal Morphology data

Number of Population- Incremental Population Population-
concentric radius population density area
rings (9.37) (9.38) (9.39) (9.40)

25 1.434 1.048 1.694 1.641
98.4 00.2 68.3 98.1

24 1.477 0.725 1.632 1.597
less 1 97.7 . 04.6 68.1 97.3

13 1.486 1.873 1.846 1.817
less 14-25 98.5 93.7 78.1 99.7

12 1.640 1.941 1.856 1.842
less 1, 14-25 98.9 89.5 59.3 99.4

10 1.416 1.831 1.822 1.780
less 11-25 98.6 92.2 82.2 99.6

9 1.566 1.887 1.810 1.788
less 1, 11-25 98.7 84.6 67.8 99.3
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eral rings are excluded. Here the dimensions vary from 1.416 to 1.822, and
if the central ring is excluded as well, the range narrows to 1.566 to 1.810
with an average of 1.763, again close to our theoretical value of 1.71. The
last data set - the Reduced Morphology, shown in Figure 9.2(d), is simply
the Full Morphology reduced by the exclusion of the periphery. However,
the data are still organized into 25 concentric rings, and as such, this rep
resents a scaled-up version of the Full Merphology. The model estimates
for the progressive exclusion of rings from this data set are shown in Table
9.5 where all 24 dimensions computed lie between 1.140 and 1.899. The
same sorts of interpretation as in the previous three data sets emerge again
here: the incremental population and density relations show the poorest
fits with the population-area and population-radius the best. The overall
best fit occurs when 11 peripheral rings are excluded, and the average
dimension when the central ring is excluded as well is 1.798.

The range of dimension values computed from these four data sets is
remarkably narrow, with only three values from the 88 estimated falling
outside the range of 1 < D < 2, these values being less than 1 in each case.
This is fairly conclusive evidence that the inverse power density function
when fitted to population density data computed with respect to the urban
field (and not just the residential built-up area) will yield a fractional
dimension between 1 and 2, with the likely value between 1.5 and 1.8. This
also implies that the density parameter should lie between 0.2 and 0.5. We
would argue that if estimates of the inverse power function yield values of
ex > 1 or ex < 0, the data or the estimation procedure is likely to be suspect,
or the data in question implies an urban morphology which is unusual.
However, before we conclude, we will also present the other two methods
of estimation, the first based on the signature equation in (8.13), the second
on the entropy estimation method relating to equations (9.41) to (9.43).

We are only able to estimate dimensions for the signature of the density

Table 9.5. Dimensions associated with the Reduced Morphology data

Number of Population- Incremental Population Population-
concentric radius population density area
rings 19.37) (9.38) 19.39) (9.40)

25 1.472 1.330 1.733 1.689
98.8 16.3 76.5 99.1

24 1.545 1.140 1.699 1.673
less 1 98.7 02.3 72.4 98.6

18 1.504 1.724 1.812 1.781
less 19-25 98.6 86.3 83.0 99.7

17 1.663 1.707 1.817 1.800
less 1, 19-25 99.1 76.0 71.1 99.5

14 1.475 1.835 1.823 1.791
less 15-25 98.3 92.7 78.6 99.6

13 1.630 1.899 1.838 1.824
less 1, 15-25 98.7 88.2 59.8 99.3
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for the Full and Reduced Morphologies, the second and fourth data sets as
presented in Figure 9.2(b) and (d). From equation (8.13), we have plotted
the signature D(R) against R and this is shown in Figure 9.4. This signature
relates to the Full Morphology, but as the Reduced Morphology is a subset
of this, the figure is relevant to both. The regional boundaries differ in that
Rb = 47.424 for the Full, Rb = 28.071 for the Reduced, and these are also
indicated in Figure 9.4. At these values of R, the dimension for the Full
system can be calculated as 1.756 in comparison with 1.704 for the Reduced.
However, it is clear from Figure 9.4 that a better value of R to take would
be the mean value C(Rb), and these yield dimensions of D{C(Rb)} of 1.845
for C(18.590), the Full data set, in contrast to 1.856 for C(14.185) for the
Reduced set. These estimates are close to and consistent with the regression
estimates in Tables 9.2 to 9.5, and some exploration of the signature in
Figure 9.4 reveals that in the region of the origin, the estimates of dimension
are volatile, although by R = 9, these estimates have settled to around D(9)
= 1.85. Clearly the mean values of C(Rb ) are the most appropriate to use.
Together with the estimates of the simulations using the DLA and DBM
methods in the two previous chapters, these signature functions have pro
ved to be the most robust methods of estimation.

The entropy estimation also produces well-fitting models with dimension
values which accord to the results so far. These estimations involve solving
equations (9.42) or (9.43) for the parameter T] by some non-linear method
here we use the Newton-Raphson method - then using Table 9.1 to calcu
late the dimensions D (= 1 + T]). Two estimates are made for each of the
four data sets, these estimates being based on solving for the constraint in
equation (9.42), then (9.43). All four data sets with their exclusions as given
previously in Tables 9.2 to 9.5 are used in the estimation, thus giving 44
estimates of D in total. These results are shown in Table 9.6. In this table,
under each dimension vallie, we first give the coefficient of determination
(100r2

) for the predictions of the incremental population model which is
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Figure 9.4. The signature of the full and reduced morphologies.
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Table 9.6. Entropy estimates of the dimension

Zonal system Full Morphology Zonal Morphology Reduced Morphology

No. of Equations No. of Equations No. of Equations No. of Equations
zones (9.42) (9.43) rings (9.42) (9.43) rings (9.42) (9.43) rings (9.42) (9.43)

80 1.132 1.703 25 0.898 0.621 25 1-.085 0.822 25 1.245 1.029
01.8 01.9 00.9 00.1 00.8 00.3 08.1 01.7
99.8 99.8 94.6 96.5 95.1 96.1 97.6 98.0

77 1.134 1.064 24 0.698 0.422 24 0.940 0.689 24 1.151 0.947
01.3 01.4 08.4 04.1 00.2 00." 02.7 04.8
99.8 99.8 95.9 97.1 95.6 96.4 97.7 98.1

71 1.188 1.134 15 1.405 1.252 13 1.942 1.973 18 1.640 1.544
03.5 03.6 39.4 44.2 94.3 94.4 66.5 68.2
99.8 99.8 98.7 99.1 99.9 99.9 99.3 99.4

68 1.199 1.130 14 1.283 1.157 12 1.972 1.990 17 1.614 1.152
02.8 02.9 21.7 24.5 93.1 93.1 59.2 60.8
99.8 99.8 98.9 99.2 99.9 99.9 99.3 99.4

9 1.870 1.829 10 1.882 1.912 14 1.881 1.870
93.3 93.6 94.3 94.4 90.6 90.6
99.8 99.8 99.9 99.9 99.8 99.8

8 1.838 1.803 9 1.910 1.931 13 1.903 1.890
90.3 90.5 92.6 93.0 88.4 88.4
99.8 99.8 99.9 99.9 99.8 99.8

Note: the first line of each cell is the fractal dimension, the second line is 100r2 for the increment of population, and the third line is
100r2 for the cumulative population.

the form in which the model is specified in equation (9.41), and below this,
we give the sam~ coefficient for the population in cumulative form.

The results are similar to those in Tables 9.2 to 9.5 in that the Zonal
System data performs least well. The Full, Zonal and Reduced Morphology
data sets give parameter values and fits which are both good and similar
to one another, and there is a consistent increase in the performance of all
models as zones or rings are progressively excluded from the estimation.
Of the 44 estimates, eight fall below D = 1 and none is greater than 2. As
in previous estimates using regression, the best fits are those obtained when
the most zones or rings are excluded. These results again strengthen our
confidence in various hypotheses that suggest that cities never fill their two
dimensional space in which they grow, regardless of any vertical growth
into the third dimension which has occurred within the last century, and
that their fractional dimension lies between 1.5 and 1.8. Moreover, if the
models and data sets to which they are applied are correctly specified, it
is easy to give order of magnitude estimates for the density and dimension
parameter values before the analysis begins.

9.9 Fractals and City Size

The theoretical analysis with which we introduced this chapter concen
trated on the relative advantages and limitations of the two classical func-
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tional forms which have dominated social physics, the negative exponential
which has become the conventional wisdom for representing density and
interaction, and the inverse power which was associated with much early
research. Notwithstanding our view that the inverse power function has
less direct but important properties which have hitherto hardly been
exploited or even recognized, the parameters of both functions reflect the
properties of the space within which such functions are defined. However,
it is clear that the parameters of the inverse power function are direct meas
ures of the extent to which the phenomena whose density is being meas
ured, fills the space available, and using arguments from urban allometry,
the link between such functions and fractal geometry can be made. Thus
the function used determines the form of the system being modeled, and
it is in this sense that we say 'form follows function'.

The empirical work in this chapter in which the inverse power function
has been fitted to population density profiles in the city of Seoul has pro
duced quite startling results. Although all the theory we have developed
in the last three chapters suggests that cities have a fractional dimension
between 1 and 2, we did not expect our results to be quite so conclusive,
over such a large range of scaling relations and estimation methods. Using
the four data sets and variants of these based on excluding certain obser
vations, we have provided 136 estimates of the dimension D and density
parameter <x. Of these, only 11 fall outside the postulated range 1 < D <
2, and these are all less than 1. If we look at the results based on excluding
the most problematic observations, of the 24 values of the dimension pro
duced, 21 fall within the range 1.566 to 1.940, thus suggesting that the 'true'
value of the dimension must be nearer 2 than 1.

However, perhaps the most important value of this analysis is not in
demonstrating the consistency of results produced by both theoretical and
empirical analysis, but in the need to be extremely careful in the way data
are collected and density defined. Strictly, we need data bases in which
every household and household size is recorded in terms of its location
before we can develop any definitive analysis of density which exploits the
fractal model most appropriately. This represents an immense task, but
with better data and data systems becoming available, it is now within the
bounds of feasibility. On both the theoretical and empirical sides of this
argument, we also need to explore the link between entropy, information
and dimension (Takayasu, 1989); for in doing so, we are likely to generate
a clearer picture of the role of the conventional model of population density
based on the negative exponential, as well as exploring further the proper
ties of the inverse power function. This will also enable us to link our
approach to the mainstream where entropy and utility maximizing are
widely used in the derivation and estimation of spatial economic, urban
and transportation models.

Finally, we need to explore the relationship between city size, fractal
dimension, changing densities and changing form. This implies once again
that we broach directly the question of an appropriate model dynamics
which encompasses processes of fractal growth (and decline), as well as
questions of reversibility. Only in this way will we be able to connect these
ideas to the large body of knowledge originally developed by Clark (1951)
which concerns the changing shape of population density profiles over
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time. If we can make progress here, it may be possible to begin to fashion
a theory of city size, shape and form which enables us to classify cities in
terms of the efficiency and perhaps economy of their form. This will be
the goal of our next and final chapter where we will speculate upon the
groundwork which is required for a fractal theory of city size.




